Fast Algorithms for Running Wavelet Analyses

نویسندگان

  • Michael Unser
  • Akram Aldroubi
چکیده

We present a general framework for the design and efficient implementation of various types of running (or over-sampled) wavelet transforms (RWT) using polynomial splines. Unlike previous techniques, the proposed algorithms are not necessarily restricted to scales that are powers of two; yet they all achieve the lowest possible complexity : 0(N) per scale, where N is signal length. In particular, we propose a new algorithm that can handle any integer dilation factor and use wavelets with a variety of shapes (including Mexican-Hat and cosine-Gabor). A similar technique is also developed for the computation of Gabor-like complex RWTs. We also indicate how the localization of the analysis templates (real or complex B-spline wavelets) can be improved arbitrarily (up to the limit specified by the uncertainty principle) by increasing the order of the splines. These algorithms are then applied to the analysis of EEG signals and yield several orders of magnitude speed improvement over a standard implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast algorithms for discrete and continuous wavelet transforms

Several algorithms are reviewed for computing various types of wavelet transforms: the Mallat algorithm, the “a trous” algorithm and their generalizations by Shensa. The goal is 1) to develop guidelines for implementing discrete and continuous wavelet transforms efficiently, 2) to compare the various algorithms obtained and give an idea of possible gains by providing operation counts. The compu...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Fast Quasi-Continuous Wavelet Algorithms for Analysis and Synthesis of One-Dimensional Signals

The wavelet transform is a widely used time-frequency tool for signal processing. However, with some rare exceptions, its use in signal processing is limited to discrete-time critically sampled transforms, which are particular cases of subband coding. On the other hand, interest in continuous wavelet analyses has been repeatedly demonstrated in the literature. However, implementation challenges...

متن کامل

Numerical stability of fast trigonometric and orthogonal wavelet transforms

Fast trigonometric transforms and periodic orthogonal wavelet transforms are essential tools for numerous practical applications. It is very important that fast algorithms work stable in a floating point arithmetic. This survey paper presents recent results on the worst case analysis of roundoff errors occurring in floating point computation of fast Fourier transforms, fast cosine transforms, a...

متن کامل

On Finding the Adams Consensus Tree

This paper presents a fast algorithm for finding the Adams consensus tree of a set of conflicting phylogenetic trees with identical leaf labels, for the first time improving the time complexity of a widely used algorithm invented by Adams in 1972 [1]. Our algorithm applies the centroid path decomposition technique [9] in a new way to traverse the input trees’ centroid paths in unison, and runs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011